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The activation of dihydrogen by transition-metal complexes has
been studied extensively for several decades.1 In contrast, the
reactions of H2 with main group elements and their compounds
have received much less attention.2 Nonetheless, a number of studies
have shown that vapor phase reactions of H2 with heavier group
13 elements can occur (usually with photoactivation) and the
products can be trapped in a frozen matrix.3 We have reported the
isolation of the heavier group 14 element alkyne analogue
Ar′GeGeAr′ (1) (Ar′ ) C6H3-2,6(C6H3-2,6-Pri2)2),4 as well as related
tin and lead species,5,6 and have shown that the “digermyne” (1)
reacts readily with unsaturated molecules such as alkynes and
azides.7 Calculations have also shown that the model species
HGeGeH exhibits a highly exothermic heat of hydrogenation,∆H≠

R

ca. -250 kJ mol-1, to give H2GeGeH2, which in turn displays a
∆H≠

R of hydrogenation of ca.-150 kJ mol-1 to afford H3GeGeH3.8

We now report that1 reacts directly with H2 in hexane at room
temperature and atmospheric pressure to yield a mixture of a
“digermene”, a digermane, and a primary germane.

The addition of 1, 2, or 3 equiv of H2 to orange-red solutions of
1 in n-hexane afforded the products shown in eqs 1-3. Removal
of the solvent under reduced pressure gave a mixture that was
analyzed by1H NMR spectroscopy in C6D6. The presence of three
products was indicated by three different Ge-H signals in the1H
NMR spectrum at 3.21, 3.58, and 5.87 ppm. For the reaction with
2 equiv of H2 (eq 2) the intensity ratio 89:10:1 was observed.
Recrystallization from a minimum volume of hexane afforded
colorless crystals of the digermane Ar′H2GeGeH2Ar′ (3) in high
yield, which displayed a Ge-H resonance at 3.21 ppm, corre-
sponding to the major product of the reaction.9b The resonance at
5.87 ppm was assigned to the orange “digermene” Ar′HGeGeHAr′
(2) whose synthesis has previously been reported by us but whose
structure has now been redetermined.9a,10 The third resonance at
3.58 ppm is due to the germane Ar′GeH3 (4), which was synthesized
independently by the reduction of Ar′Ge(OMe)3 with LiAlH 4.9c The
reactions of1 with 1 or 3 equiv of H2 also led to a mixture of
products. For 1 equiv of H2, the red color of1 faded slightly over
24 h and a large portion of1 (60%) was found to remain unreacted.

The Ge-H resonances corresponding to2, 3, and4 were observed
in the 1H NMR spectrum in the intensity ratio 38:38:24. For the
addition of 3 equiv of H2, the color faded over 6 h and only
compounds3 and4 were observed in the1H NMR spectrum in the
product ratio 65:35 (eq 3).9d

The digermane3, synthesized via eq 2, crystallizes with three
independent molecules in the asymmetric unit. One of these is given
in Figure 1, which shows that there is a trans-bent Ar′GeGeAr′
arrangement with an average Ge-Ge bond distance of 2.4019(10)
Å and C-Ge-Ge angles ranging from 109.79(14) to 120.17(14)°.11a

These may be compared with those of the digermane ArFH2GeGeH2-
ArF (ArF ) C6F5, Ge-Ge) 2.394(1) Å, C-Ge-Ge) 108.6(2)°).12

The Ge-H signal in the1H NMR spectrum at 3.21 ppm is slightly
upfield of the 4-6 ppm range previously observed for Ge(IV)
hydrides.13 The IR spectrum displayed absorptions due to the Ge-H
vibrations at 2120 and 2060 cm-1.

Compound2 (Figure 2)11b features a trans-pyramidal, “dimet-
allene” core arrangement with a Ge-Ge distance of 2.3026(3) Å,14

which is comparable to those in the terphenyl-substituted digermene
derivatives previously isolated by our group: Ar*RGeGeRAr*,
Ge-Ge ) 2.3173(3)-2.347(3) Å (Ar* ) C6H3-2,6(C6H2-2,4,6-
Pri3)2; R ) Me, Et, Ph).15 The presence of lone pair character at
Ge is indicated by an out-of-plane angle of 45.0°.16 The IR

Figure 1. Thermal ellipsoid (50%) drawing of3; H atoms (except Ge-H)
are not shown. Selected bond lengths (Å) and angles (°): Ge-Ge (avg)
2.4019(10), Ge-Cipso range 1.962(5)-1.997(5), Ge-H (avg) 1.44(4);
C-Ge-Ge range 109.85(14)-120.12(16).

Figure 2. Thermal ellipsoid (50%) drawing of2; H atoms (except Ge-H)
are not shown. Selected bond lengths (Å) and angles (°): Ge1-Ge1′
2.3026(3), Ge1-C1 1.9677(12), Ge-H 1.46(2); C1-Ge1-Ge1′ 121.93(4).

Ar′GeGeAr′ (1) + 1H2 f 60% Ar′GeGeAr′ (1) (1)

+ 21% Ar′HGeGeHAr′ (2)

+ 10% Ar′H2GeGeH2Ar′ (3)

+ 9% Ar′GeH3 (4)

Ar′GeGeAr′ (1) + 2H2 f 2% Ar′HGeGeHAr′ (2) (2)

+ 85% Ar′H2GeGeH2Ar′ (3)

+ 13% Ar′GeH3 (4)

Ar′GeGeAr′ (1) + 3H2 f 65% Ar′H2GeGeH2Ar′ (3) (3)

+ 35% Ar′GeH3 (4)
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absorptions for Ge-H were observed at 2100 and 2060 cm-1, which
are close to the values for3. However, GeGe multiple bonding
was further supported by an n- f n+ absorption at 434 nm (ε )
17 000). In the1H NMR spectrum, the Ge-H signal is observed at
5.87 ppm, which is close to those previously observed for Ge(II)
hydrides.13 The structure of4 (Figure 3)11c features Ge-C distances
(Ge1-C1) 1.976(2) Å and Ge2-C31) 1.983(2) Å) that resemble
those observed for2 and 3. The IR absorption for Ge-H was
observed at 2080 cm-1, which is similar to that of the digermane
3. The Ge-H resonance in the1H NMR spectrum at 3.58 ppm is
comparable to that of3 and is near the range previously observed
for Ge(IV) hydrides.13

The data described above show clearly that H2 reacts readily
with unsaturated Ar′GeGeAr′ at room temperature and pressure.
The direct addition of H2 to an unsaturated, closed shell main group
compound under such mild conditions appears to be unprecedented.2

The initial step in this reaction is currently unknown, but it may
involve the symmetry-allowed interaction of the H2 σ-bonding MO
with the LUMO of Ar′GeGeAr′ (which is the n+ combination)17 to
generate the digermene Ar′HGeGeHAr′ (2). The digermane Ar′H2-
GeGeH2Ar′ (3) can be produced by direct addition of H2 to Ge-
Ge bonded2. The inclusion of4, which has no Ge-Ge bond,
among the products may be accounted for by the fact that the
digermene2 exists in equilibrium with either monomeric :GeHAr′
or the bridged isomer Ar′Ge(µ-H)2GeAr′. The possibility of the
latter type of structure is supported by calculations18 and by the
isolation of the related tin compound Ar*Sn(µ-H)2SnAr*.19 In these
germanium species there is no Ge-Ge bond, and their reaction
with H2 could be expected to afford the primary germane Ar′GeH3

(4). An alternative explanation of the highly reactive nature of1
lies in the possible singlet diradical character of the Ge-Ge
bonding, which is supported by calculations.20 The ready addition
of H2 to 1 or 2 suggests that it may be possible to add H2 to other
unsaturated heavier group 14 compounds. Work to elucidate the
details of the mechanism of the reactions of H2 with 1 or other
unsaturated heavier main group compounds and their possible
reversibility is in hand.
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Figure 3. Thermal ellipsoid (50%) drawing of4; H atoms (except Ge-H)
are not shown. Selected bond lengths (Å): Ge-Cipso (avg) 1.979(2), Ge-H
(avg) 1.445(10).
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