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The activation of dihydrogen by transition-metal complexes has
been studied extensively for several decddés.contrast, the
reactions of H with main group elements and their compounds
have received much less attentfddonetheless, a number of studies
have shown that vapor phase reactions efukth heavier group
13 elements can occur (usually with photoactivation) and the
products can be trapped in a frozen matri’e have reported the
isolation of the heavier group 14 element alkyne analogue
Ar'GeGeAf (1) (Ar' = CgH3-2,6(GHs-2,6-Piy),),* as well as related
tin and lead speci€=’ and have shown that the “digermyne) (
reacts readily with unsaturated molecules such as alkynes and
azides’ Calculations have also shown that the model species

HGeGeH exhibits a highly exothermic heat of hydrogenaiidn®r
ca. —250 kJ mot?, to give HGeGeH, which in turn displays a
AH®g of hydrogenation of ca-150 kJ motl? to afford HsGeGeH.8
We now report thatl reacts directly with Hin hexane at room

temperature and atmospheric pressure to yield a mixture of a

“digermene”, a digermane, and a primary germane.
Ar'GeGeAf (1) + 1H, — 60% ArGeGeAr (1)

+ 21% ArHGeGeHAt (2)
+ 10% ArH,GeGeHAr' (3)

+ 9% Ar'GeH, (4)
Ar'GeGeAf (1) + 2H, — 2% ArHGeGeHA! (2)

+ 85% ArH,GeGeHAr" (3)

+ 13% ArGeH, (4)
Ar'GeGeAf (1) + 3H,— 65% ArH,GeGeHAr" (3)

+ 35% ArGeH, (4)

@)

)

®)

The addition of 1, 2, or 3 equiv of +to orange-red solutions of
1in n-hexane afforded the products shown in egs31Removal

Figure 1. Thermal ellipsoid (50%) drawing &; H atoms (except GeH)
are not shown. Selected bond lengths (A) and andlesGe—Ge (avg)
2.4019(10), GeCipso range 1.962(5)1.997(5), Ge-H (avg) 1.44(4);
C—Ge—Ge range 109.85(14)120.12(16).

Figure 2. Thermal ellipsoid (50%) drawing &; H atoms (except GeH)
are not shown. Selected bond lengths (A) and angigs Gel-Gel
2.3026(3), GetC1 1.9677(12), GeH 1.46(2); C1-Gel-Gel 121.93(4).

The Ge-H resonances corresponding2a3, and4 were observed
in the IH NMR spectrum in the intensity ratio 38:38:24. For the
addition of 3 equiv of H, the color faded owe6 h and only
compounds and4 were observed in thtH NMR spectrum in the
product ratio 65:35 (eq 3}

The digermane3, synthesized via eq 2, crystallizes with three

of the solvent under reduced pressure gave a mixture that wasindependent molecules in the asymmetric unit. One of these is given

analyzed byH NMR spectroscopy in §Ds. The presence of three
products was indicated by three different-@4 signals in the'H

in Figure 1, which shows that there is a trans-beniG&GeAt
arrangement with an average ©8e bond distance of 2.4019(10)

NMR spectrum at 3.21, 3.58, and 5.87 ppm. For the reaction with A and C—-Ge—Ge angles ranging from 109.79(14) to 120.17{1%

2 equiv of K (eq 2) the intensity ratio 89:10:1 was observed.
Recrystallization from a minimum volume of hexane afforded
colorless crystals of the digermane'AsGeGeHAr' (3) in high
yield, which displayed a GeH resonance at 3.21 ppm, corre-
sponding to the major product of the reactf8iThe resonance at
5.87 ppm was assigned to the orange “digermenéfiGeGeHAf

These may be compared with those of the digermahie ZeGehH-
ArF (ArF = C4Fs, Ge—Ge= 2.394(1) A, C-Ge—Ge= 108.6(2}).12
The Ge-H signal in the'H NMR spectrum at 3.21 ppm is slightly
upfield of the 4-6 ppm range previously observed for Ge(IV)
hydrides!® The IR spectrum displayed absorptions due to the Be
vibrations at 2120 and 2060 crh

(2) whose synthesis has previously been reported by us but whose Compound2 (Figure 2} features a trans-pyramidal, “dimet-

structure has now been redetermifi@é The third resonance at
3.58 ppm is due to the germane @ehH; (4), which was synthesized
independently by the reduction of ‘&e(OMe} with LIAIH 4.9 The
reactions ofl with 1 or 3 equiv of H also led to a mixture of
products. For 1 equiv of i the red color ofl faded slightly over
24 h and a large portion df (60%) was found to remain unreacted.
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allene” core arrangement with a 66e distance of 2.3026(3) &,
which is comparable to those in the terphenyl-substituted digermene
derivatives previously isolated by our group: Ar*RGeGeRAr*,
Ge-Ge = 2.3173(3)-2.347(3) A (Ar* = CgHa-2,6(GsH»-2,4,6-
Prs),; R = Me, Et, Ph)!® The presence of lone pair character at
Ge is indicated by an out-of-plane angle of 4#5© The IR

10.1021/ja053247a CCC: $30.25 © 2005 American Chemical Society
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Figure 3. Thermal ellipsoid (50%) drawing ef, H atoms (except GeH)
are not shown. Selected bond lengths (A):—@ipso (avg) 1.979(2), GeH
(avg) 1.445(10).

absorptions for GeH were observed at 2100 and 2060 ¢nwhich
are close to the values f@& However, GeGe multiple bonding
was further supported by an-r—~ n;. absorption at 434 nme(=
17 000). In thetH NMR spectrum, the GeH signal is observed at
5.87 ppm, which is close to those previously observed for Ge(ll)
hydrides!® The structure oft (Figure 3}'¢features Ge C distances
(Gel-C1=1.976(2) A and Ge2C31=1.983(2) A) that resemble
those observed fo2 and 3. The IR absorption for GeH was
observed at 2080 cm, which is similar to that of the digermane
3. The Ge-H resonance in théH NMR spectrum at 3.58 ppm is
comparable to that & and is near the range previously observed
for Ge(IV) hydrides'®

The data described above show clearly thatréhcts readily
with unsaturated AGeGeAr at room temperature and pressure.
The direct addition of klto an unsaturated, closed shell main group
compound under such mild conditions appears to be unprecedented.
The initial step in this reaction is currently unknown, but it may
involve the symmetry-allowed interaction of the &tbonding MO
with the LUMO of ArGeGeAt (which is the n. combination)” to
generate the digermene'AGeGeHAf (2). The digermane AH,-
GeGeHAr' (3) can be produced by direct addition of kb Ge—
Ge bonded2. The inclusion of4, which has no GeGe bond,
among the products may be accounted for by the fact that the
digermene exists in equilibrium with either monomeric :GeHAr
or the bridged isomer AGe(«-H),GeAr. The possibility of the
latter type of structure is supported by calculatiérend by the
isolation of the related tin compound Ar*Snf),SnAr*.2% In these
germanium species there is no -88e bond, and their reaction
with H; could be expected to afford the primary german&Gai-
(4). An alternative explanation of the highly reactive naturelof
lies in the possible singlet diradical character of the—Ge
bonding, which is supported by calculatiocsThe ready addition
of H, to 1 or 2 suggests that it may be possible to addtélother
unsaturated heavier group 14 compounds. Work to elucidate the
details of the mechanism of the reactions of With 1 or other
unsaturated heavier main group compounds and their possible
reversibility is in hand.
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